Bacterial natural transformation by highly fragmented and damaged DNA.
نویسندگان
چکیده
DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old.
منابع مشابه
DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA.
Natural genetic transformation in the bacterium Bacillus subtilis provides an experimental system for studying the evolutionary function of sexual recombination. The repair hypothesis proposes that during transformation the exogenous DNA taken up by cells is used as template for recombinational repair of damages in the recipient cell's genome. Earlier results demonstrated that the population de...
متن کاملروش سریع و مؤثر ترانسفورمسازی باکتری اشریشیاکلی
Background & Objective: Transformation of plasmid DNA into bacterial competent cells is a key technique for molecular cloning. Transformation can be achieved using either chemical or physical methods, e.g., electroporation. The rate of success in these methods depends on experience and attention to method’s details. Therefore, the higher the efficiency and quality of a transformation method, ...
متن کاملBioluminescence-based system for rapid detection of natural transformation.
Horizontal gene transfer plays a significant role in bacterial evolution and has major clinical importance. Thus, it is vital to understand the mechanisms and kinetics of genetic transformations. Natural transformation is the driving mechanism for horizontal gene transfer in diverse genera of bacteria. Our study introduces a simple and rapid method for the investigation of natural transformatio...
متن کاملNatural transformation occurs independently of the essential actin-like MreB cytoskeleton in Legionella pneumophila
Natural transformation is the process by which bacteria can actively take up and integrate exogenous DNA thereby providing a source of genetic diversity. Under specific growth conditions the coordinated expression of several genes--a situation referred to as "competence"--allows bacteria to assemble a highly processive and dedicated system that can import high molecular weight DNA. Within the c...
متن کاملConservative Sex and the Benefits of Transformation in Streptococcus pneumoniae
Natural transformation has significant effects on bacterial genome evolution, but the evolutionary factors maintaining this mode of bacterial sex remain uncertain. Transformation is hypothesized to have both positive and negative evolutionary effects on bacteria. It can facilitate adaptation by combining beneficial mutations into a single individual, or reduce the mutational load by exposing de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 49 شماره
صفحات -
تاریخ انتشار 2013